Lithium Uses

By November 13, 2018Lithium

Lithium is used in many applications, but the fastest growing industry is probably the lithium battery. While it doesn’t work like a lead-acid battery, which oxidizes the metal for electric discharge, it functions similarly, isn’t as toxic, and is much lighter. Companies have come under fire for the conditions which lithium miners work in South America.

Ceramics and glass

Lithium oxide is widely used as a flux for processing silica, reducing the melting point and viscosity of the material and leading to glazes with improved physical properties including low coefficients of thermal expansion. Worldwide, this is one of the largest use for lithium compounds. Glazes containing lithium oxides are used for ovenware. Lithium carbonate (Li2CO3) is generally used in this application because it converts to the oxide upon heating.

Electrical and electronics

Late in the 20th century, lithium became an important component of battery electrolytes and electrodes, because of its high electrode potential. Because of its low atomic mass, it has a high charge- and power-to-weight ratio. A typical lithium-ion battery can generate approximately 3 volts per cell, compared with 2.1 volts for lead-acid and 1.5 volts for zinc-carbon. Lithium-ion batteries, which are rechargeable and have a high energy density, differ from lithium batteries, which are disposable (primary) batteries with lithium or its compounds as the anode. Other rechargeable batteries that use lithium include the lithium-ion polymer battery, lithium iron phosphate battery, and the nanowire battery.

Lubricating greases

The third most common use of lithium is in greases. Lithium hydroxide is a strong base and, when heated with a fat, produces a soap made of lithium stearate. Lithium soap has the ability to thicken oils, and it is used to manufacture all-purpose, high-temperature lubricating greases.

Metallurgy

Lithium (e.g. as lithium carbonate) is used as an additive to continuous casting mould flux slags where it increases fluidity, a use which accounts for 5% of global lithium use (2011). Lithium compounds are also used as additives (fluxes) to foundry sand for iron casting to reduce veining.

Lithium (as lithium fluoride) is used as an additive to aluminium smelters (Hall–Héroult process), reducing melting temperature and increasing electrical resistance, a use which accounts for 3% of production (2011).

When used as a flux for welding or soldering, metallic lithium promotes the fusing of metals during the process and eliminates the forming of oxides by absorbing impurities. Alloys of the metal with aluminium, cadmium, copper and manganese are used to make high-performance aircraft parts (see also Lithium-aluminium alloys).

Silicon nano-welding

Lithium has been found effective in assisting the perfection of silicon nano-welds in electronic components for electric batteries and other devices.

Air purification

Lithium chloride and lithium bromide are hygroscopic and are used as desiccants for gas streams. Lithium hydroxide and lithium peroxide are the salts most used in confined areas, such as aboard spacecraft and submarines, for carbon dioxide removal and air purification. Lithium hydroxide absorbs carbon dioxide from the air by forming lithium carbonate, and is preferred over other alkaline hydroxides for its low weight.

Lithium peroxide (Li2O2) in presence of moisture not only reacts with carbon dioxide to form lithium carbonate, but also releases oxygen.

Optics

Lithium fluoride, artificially grown as crystal, is clear and transparent and often used in specialist optics for IR, UV and VUV (vacuum UV) applications. It has one of the lowest refractive indexes and the furthest transmission range in the deep UV of most common materials. Finely divided lithium fluoride powder has been used for thermoluminescent radiation dosimetry (TLD): when a sample of such is exposed to radiation, it accumulates crystal defects which, when heated, resolve via a release of bluish light whose intensity is proportional to the absorbed dose, thus allowing this to be quantified. Lithium fluoride is sometimes used in focal lenses of telescopes.

The high non-linearity of lithium niobate also makes it useful in non-linear optics applications. It is used extensively in telecommunication products such as mobile phones and optical modulators, for such components as resonant crystals. Lithium applications are used in more than 60% of mobile phones.

Organic and polymer chemistry

Organolithium compounds are widely used in the production of polymer and fine-chemicals. In the polymer industry, which is the dominant consumer of these reagents, alkyl lithium compounds are catalysts/initiators.

Nuclear

Lithium-6 is valued as a source material for tritium production and as a neutron absorber in nuclear fusion. Natural lithium contains about 7.5% lithium-6 from which large amounts of lithium-6 have been produced by isotope separation for use in nuclear weapons. Lithium-7 gained interest for use in nuclear reactor coolants.

Medicine

Lithium is useful in the treatment of bipolar disorder. Lithium salts may also be helpful for related diagnoses, such as schizoaffective disorder and cyclic major depression. The active part of these salts is the lithium ion Li+. They may increase the risk of developing Ebstein’s cardiac anomaly in infants born to women who take lithium during the first trimester of pregnancy.

Leave a Reply